Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Biol Sci ; 291(2020): 20232874, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38565152

RESUMEN

Protected area (PA) networks are a pivotal tool to fight biodiversity loss, yet they often need to balance the mission of nature conservation with the socio-economic need of giving opportunity for outdoor recreation. Recreation in natural areas is important for human health in an urbanized society, but can prompt behavioural modifications in wild animals. Rarely, however, have these responses being studied across multiple PAs and using standardized methods. We deployed a systematic camera trapping protocol at over 200 sites to sample medium and large mammals in four PAs within the European Natura 2000 network to assess their spatio-temporal responses to human frequentation, proximity to towns, amount of open habitat and topographical variables. By applying multi-species and single-species models for the number of diurnal, crepuscular and nocturnal detections and a multi-species model for nocturnality index, we estimated both species-specific- and meta-community-level effects, finding that increased nocturnality appeared the main strategy that the mammal meta-community used to cope with human disturbance. However, responses in the diurnal, crepuscular and nocturnal site use were mediated by species' body mass, with larger species exhibiting avoidance of humans and smaller species more opportunistic behaviours. Our results show the effectiveness of standardized sampling and provide insights for planning the expansion of PA networks as foreseen by the Kunming-Montreal biodiversity agreement.


Asunto(s)
Conservación de los Recursos Naturales , Mamíferos , Animales , Humanos , Conservación de los Recursos Naturales/métodos , Mamíferos/fisiología , Ecosistema , Animales Salvajes , Biodiversidad , Italia
2.
PLoS One ; 19(2): e0281408, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38315706

RESUMEN

Since 1997 Tanzania has undertaken a process to identify and declare a network of Nature Forest Reserves (NFRs) with high biodiversity values, from within its existing portfolio of national Forest Reserves, with 16 new NFRs declared since 2015. The current network of 22 gazetted NFRs covered 948,871 hectares in 2023. NFRs now cover a range of Tanzanian habitat types, including all main forest types-wet, seasonal, and dry-as well as wetlands and grasslands. NFRs contain at least 178 of Tanzania's 242 endemic vertebrate species, of which at least 50% are threatened with extinction, and 553 Tanzanian endemic plant taxa (species, subspecies, and varieties), of which at least 50% are threatened. NFRs also support 41 single-site endemic vertebrate species and 76 single-site endemic plant taxa. Time series analysis of management effectiveness tracking tool (METT) data shows that NFR management effectiveness is increasing, especially where donor funds have been available. Improved management and investment have resulted in measurable reductions of some critical threats in NFRs. Still, ongoing challenges remain to fully contain issues of illegal logging, charcoal production, firewood, pole-cutting, illegal hunting and snaring of birds and mammals, fire, wildlife trade, and the unpredictable impacts of climate change. Increased tourism, diversified revenue generation and investment schemes, involving communities in management, and stepping up control measures for remaining threats are all required to create a network of economically self-sustaining NFRs able to conserve critical biodiversity values.


Asunto(s)
Conservación de los Recursos Naturales , Bosques , Animales , Tanzanía , Conservación de los Recursos Naturales/métodos , Ecosistema , Biodiversidad , Mamíferos
3.
Sci Rep ; 14(1): 869, 2024 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-38195759

RESUMEN

Although male and female mammals differ in biological traits and functional needs, the contribution of this sexual dimorphism to variations in gut bacteria and fungi (gut microbiota) in relation to habitat type has not been fully examined. To understand whether the combination of sex and habitat affects gut microbiota variation, we analyzed 40 fecal samples of wild yellow baboons (Papio cynocephalus) living in contrasting habitat types (intact, well-protected vs. fragmented, less protected forests) in the Udzungwa Mountains of Tanzania. Sex determination was performed using the marker genes SRY (Sex-determining Region Y) and DDX3X-DDX3Y (DEAD-Box Helicase 3). Samples were attributed to 34 individuals (19 females and 15 males) belonging to five social groups. Combining the results of sex determination with two amplicon sequencing datasets on bacterial (V1-V3 region of the 16S rRNA gene) and fungal (ITS2) gut communities, we found that overall, baboon females had a significantly higher gut bacterial richness compared to males. Beta diversity estimates indicated that bacterial composition was significantly different between males and females, and this was true for individuals from both well- and less protected forests. Our results highlight the combined role of sex and habitat type in shaping variation in gut microbial communities in wild non-human primates.


Asunto(s)
Microbioma Gastrointestinal , Papio cynocephalus , Femenino , Masculino , Animales , Papio cynocephalus/genética , Microbioma Gastrointestinal/genética , ARN Ribosómico 16S/genética , Genes sry , Bosques , Papio , Mamíferos
4.
Conserv Biol ; : e14221, 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37937455

RESUMEN

Reliable maps of species distributions are fundamental for biodiversity research and conservation. The International Union for Conservation of Nature (IUCN) range maps are widely recognized as authoritative representations of species' geographic limits, yet they might not always align with actual occurrence data. In recent area of habitat (AOH) maps, areas that are not habitat have been removed from IUCN ranges to reduce commission errors, but their concordance with actual species occurrence also remains untested. We tested concordance between occurrences recorded in camera trap surveys and predicted occurrences from the IUCN and AOH maps for 510 medium- to large-bodied mammalian species in 80 camera trap sampling areas. Across all areas, cameras detected only 39% of species expected to occur based on IUCN ranges and AOH maps; 85% of the IUCN only mismatches occurred within 200 km of range edges. Only 4% of species occurrences were detected by cameras outside IUCN ranges. The probability of mismatches between cameras and the IUCN range was significantly higher for smaller-bodied mammals and habitat specialists in the Neotropics and Indomalaya and in areas with shorter canopy forests. Our findings suggest that range and AOH maps rarely underrepresent areas where species occur, but they may more often overrepresent ranges by including areas where a species may be absent, particularly at range edges. We suggest that combining range maps with data from ground-based biodiversity sensors, such as camera traps, provides a richer knowledge base for conservation mapping and planning.


Combinación de censos con fototrampas y mapas de extensión de la UICN para incrementar el conocimiento sobre la distribución de las especies Resumen Los mapas confiables de la distribución de las especies son fundamentales para la investigación y conservación de la biodiversidad. Los mapas de distribución de la Unión Internacional para la Conservación de la Naturaleza (UICN) están reconocidos como representaciones de autoridad de los límites geográficos de las especies, aunque no siempre se alinean con los datos actuales de su presencia. En los mapas recientes de área de hábitat (ADH), las áreas que no son hábitat han sido eliminadas de la distribución de la UICN para reducir los errores de comisión, pero su concordancia con la presencia actual de las especies tampoco ha sido analizada. Analizamos la concordancia entre la presencia registrada por los censos de fototrampas y pronosticamos la presencia a partir de los mapas de la UICN y de ADH de 510 especies de mamíferos de talla mediana a grande en 80 áreas de muestreo de fototrampas. Las cámaras detectaron sólo el 39% de las especies esperadas con base en la distribución de la UICN y los mapas de ADH en todas las áreas; el 85% de las disparidades con la UICN ocurrieron dentro de los 200 km a partir del borde de la distribución. Sólo el 4% de la presencia de las especies fue detectada por las cámaras ubicadas fuera de la distribución de la UICN. La probabilidad de disparidad entre las cámaras y la UICN fue significativamente mayor para los mamíferos de talla pequeña y para los especialistas de hábitat en las regiones Neotropical e Indomalaya y en áreas con doseles forestales más bajos. Nuestros hallazgos sugieren que los mapas de distribución y ADH pocas veces subrepresentan las áreas con presencia de las especies, pero con frecuencia pueden sobrerrepresentar la distribución al incluir áreas en donde las especies pueden estar ausentes, en particular los bordes de la distribución. Sugerimos que la combinación de los mapas de distribución con los sensores de biodiversidad en tierra, como las fototrampas, proporciona una base más rica de conocimiento para el mapeo y la planeación de la conservación.

5.
Ecology ; 104(12): e4181, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37784251

RESUMEN

Many animal-environment interactions are mediated by the physical forms of the environment, especially in tropical forests, where habitats are structurally complex and highly diverse. Higher structural complexity, measured as habitat surface area, may provide increased resource availability for animals, leading to higher animal diversity. Greater habitat surface area supports increased animal diversity in other systems, such as coral reefs and forest canopies, but it is uncertain how this relationship translates to communities of highly mobile, terrestrial mammal species inhabiting forest floors. We tested the relative importance of forest floor habitat structure, encompassing vegetation and topographic structure, in determining species occupancy and functional diversity of medium to large mammals using data from a tropical forest in the Udzungwa Mountains of Tanzania. We related species occupancies and diversity obtained from a multispecies occupancy model with ground-level habitat structure measurements obtained from a novel head-mounted active remote sensing device, the Microsoft HoloLens. We found that habitat surface area was a significant predictor of mean species occupancy and had a significant positive relationship with functional dispersion. The positive relationships indicate that surface area of tropical forest floors may play an important role in promoting mammal occupancy and functional diversity at the microhabitat scale. In particular, habitat surface area had higher mean effects on occupancy for carnivorous and social species. These results support a habitat surface area-diversity relationship on tropical forest floors for mammals.


Asunto(s)
Biodiversidad , Carnívoros , Animales , Bosques , Ecosistema , Mamíferos , Arrecifes de Coral
6.
Nat Ecol Evol ; 7(7): 1092-1103, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37365343

RESUMEN

Protected areas (PAs) play a vital role in wildlife conservation. Nonetheless there is concern and uncertainty regarding how and at what spatial scales anthropogenic stressors influence the occurrence dynamics of wildlife populations inside PAs. Here we assessed how anthropogenic stressors influence occurrence dynamics of 159 mammal species in 16 tropical PAs from three biogeographic regions. We quantified these relationships for species groups (habitat specialists and generalists) and individual species. We used long-term camera-trap data (1,002 sites) and fitted Bayesian dynamic multispecies occupancy models to estimate local colonization (the probability that a previously empty site is colonized) and local survival (the probability that an occupied site remains occupied). Multiple covariates at both the local scale and landscape scale influenced mammal occurrence dynamics, although responses differed among species groups. Colonization by specialists increased with local-scale forest cover when landscape-scale fragmentation was low. Survival probability of generalists was higher near the edge than in the core of the PA when landscape-scale human population density was low but the opposite occurred when population density was high. We conclude that mammal occurrence dynamics are impacted by anthropogenic stressors acting at multiple scales including outside the PA itself.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales , Humanos , Animales , Teorema de Bayes , Bosques , Mamíferos , Animales Salvajes
7.
Ambio ; 52(6): 1085-1097, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36626062

RESUMEN

Outdoor recreation in natural areas has become an increasingly popular activity globally, yet the long-term effects on wildlife are poorly known. Reconciling human access to nature and wildlife conservation requires sound evaluations of how outdoor activities affect biodiversity in space and time. We aimed to contribute to this topic by asking whether tourism in the world-renown Dolomites, Italy, affected wild mammals in the long term, and if it elicited spatial or temporal avoidance. We detected mammals by systematic camera trapping over seven consecutive summers at 60, consistently sampled, sites, and estimated trends in occurrence at community and species levels through a dynamic community occupancy model, combined with site use intensity and an index of nocturnality. Overall, 70% of the 520 000 images obtained depicted humans, whose presence intensified over the 7-year period. Nonetheless, both community and most species-level occurrences increased. However, human activities caused a strong temporal avoidance in the whole community, especially in most disturbed sites, while spatial avoidance was observed only for bigger-sized species.


Asunto(s)
Animales Salvajes , Biodiversidad , Animales , Humanos , Mamíferos , Caza , Actividades Humanas , Recreación , Conservación de los Recursos Naturales
8.
Nat Commun ; 13(1): 7102, 2022 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-36402775

RESUMEN

An animal's daily use of time (their "diel activity") reflects their adaptations, requirements, and interactions, yet we know little about the underlying processes governing diel activity within and among communities. Here we examine whether community-level activity patterns differ among biogeographic regions, and explore the roles of top-down versus bottom-up processes and thermoregulatory constraints. Using data from systematic camera-trap networks in 16 protected forests across the tropics, we examine the relationships of mammals' diel activity to body mass and trophic guild. Also, we assess the activity relationships within and among guilds. Apart from Neotropical insectivores, guilds exhibited consistent cross-regional activity in relation to body mass. Results indicate that thermoregulation constrains herbivore and insectivore activity (e.g., larger Afrotropical herbivores are ~7 times more likely to be nocturnal than smaller herbivores), while bottom-up processes constrain the activity of carnivores in relation to herbivores, and top-down processes constrain the activity of small omnivores and insectivores in relation to large carnivores' activity. Overall, diel activity of tropical mammal communities appears shaped by similar processes and constraints among regions reflecting body mass and trophic guilds.


Asunto(s)
Carnívoros , Bosques , Animales , Herbivoria , Estado Nutricional
9.
Glob Chang Biol ; 28(24): 7205-7216, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36172946

RESUMEN

The spatial aggregation of species pairs often increases with the ecological similarity of the species involved. However, the way in which environmental conditions and anthropogenic activity affect the relationship between spatial aggregation and ecological similarity remains unknown despite the potential for spatial associations to affect species interactions, ecosystem function, and extinction risk. Given that human disturbance has been shown to both increase and decrease spatial associations among species pairs, ecological similarity may have a role in mediating these patterns. Here, we test the influences of habitat diversity, primary productivity, human population density, and species' ecological similarity based on functional traits (i.e., functional trait similarity) on spatial associations among tropical forest mammals. Large mammals are highly sensitive to anthropogenic change and therefore susceptible to changes in interspecific spatial associations. Using two-species occupancy models and camera trap data, we quantified the spatial overlap of 1216 species pairs from 13 tropical forest protected areas around the world. We found that the association between ecological similarity and interspecific species associations depended on surrounding human density. Specifically, aggregation of ecologically similar species was more than an order of magnitude stronger in landscapes with the highest human density compared to those with the lowest human density, even though all populations occurred within protected areas. Human-induced changes in interspecific spatial associations have been shown to alter top-down control by predators, increase disease transmission and increase local extinction rates. Our results indicate that anthropogenic effects on the distribution of wildlife within protected areas are already occurring and that impacts on species interactions, ecosystem functions, and extinction risk warrant further investigation.


Asunto(s)
Biodiversidad , Ecosistema , Animales , Humanos , Bosques , Mamíferos , Densidad de Población
10.
Proc Biol Sci ; 289(1978): 20220457, 2022 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-35858066

RESUMEN

The structure of forest mammal communities appears surprisingly consistent across the continental tropics, presumably due to convergent evolution in similar environments. Whether such consistency extends to mammal occupancy, despite variation in species characteristics and context, remains unclear. Here we ask whether we can predict occupancy patterns and, if so, whether these relationships are consistent across biogeographic regions. Specifically, we assessed how mammal feeding guild, body mass and ecological specialization relate to occupancy in protected forests across the tropics. We used standardized camera-trap data (1002 camera-trap locations and 2-10 years of data) and a hierarchical Bayesian occupancy model. We found that occupancy varied by regions, and certain species characteristics explained much of this variation. Herbivores consistently had the highest occupancy. However, only in the Neotropics did we detect a significant effect of body mass on occupancy: large mammals had lowest occupancy. Importantly, habitat specialists generally had higher occupancy than generalists, though this was reversed in the Indo-Malayan sites. We conclude that habitat specialization is key for understanding variation in mammal occupancy across regions, and that habitat specialists often benefit more from protected areas, than do generalists. The contrasting examples seen in the Indo-Malayan region probably reflect distinct anthropogenic pressures.


Asunto(s)
Ecosistema , Bosques , Animales , Teorema de Bayes , Biodiversidad , Conservación de los Recursos Naturales , Herbivoria , Mamíferos
11.
Ecol Appl ; 32(7): e2644, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35471769

RESUMEN

Mammalian communities inhabiting temperate grasslands are of conservation concern globally, especially in Central Asia, where livestock numbers have dramatically increased in recent decades, leading to overgrazing and land-use change. Yet, how this pervasive presence of livestock herds affects the community of wild mammals remains largely unstudied. We used systematic camera trapping at 216 sites across remote, mountainous areas of the Mongolian Altai Mountains to assess the spatial and temporal patterns of occurrence and the interspecific relationships within a mammalian community that includes different categories of livestock. By adopting a recently proposed multispecies occupancy model that incorporates interspecific correlation in occupancy, we found several statistically strong correlations in occupancy among species pairs, with the majority involving livestock. The sign of such associations was markedly species-dependent, with larger wild species of conservation concern, namely, snow leopard and Siberian ibex, avoiding livestock presence. As predicted, we found evidence of a positive correlation in occupancy between predators and their respective main prey. Contrary to our expectations, a number of intraguild species pairs also showed positive co-occurrence, with no evidence of spatiotemporal niche partitioning. Overall, our study suggests that livestock encroaching into protected areas influences the whole local community of wild mammals. Though pastoralism has coexisted with wildlife for millennia in central Asian grasslands, our findings suggest that policies and practices to decrease the pressure of livestock husbandry on wildlife are needed, with special attention on large species, such as the snow leopard and its wild prey, which seem to be particularly sensitive to this pervasive livestock presence.


Asunto(s)
Ganado , Panthera , Animales , Animales Salvajes , Conservación de los Recursos Naturales
12.
Sci Rep ; 11(1): 21569, 2021 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-34732823

RESUMEN

The mammalian gastrointestinal tract harbours a highly complex ecosystem composed of a variety of micro- (bacteria, fungi, viruses, protozoans) and macro-organisms (helminths). Although most microbiota research focuses on the variation of single gut components, the crosstalk between components is still poorly characterized, especially in hosts living under natural conditions. We investigated the gut micro-biodiversity (bacteria, fungi and helminths) of 158 individuals of two wild non-human primates, the Udzungwa red colobus (Procolobus gordonorum) and the yellow baboon (Papio cynocephalus). These species have contrasting diets and lifestyles, but live sympatrically in both human-impacted and pristine forests in the Udzungwa Mountains of Tanzania. Using non-invasive faecal pellets, helminths were identified using standard microscopy while bacteria and fungi were characterized by sequencing the V1-V3 variable region of the 16S rRNA gene for bacteria and the ITS1-ITS2 fragment for fungi. Our results show that both diversity and composition of bacteria and fungi are associated with variation in helminth presence. Although interactions differed by habitat type, in both primates we found that Strongyloides was negatively associated and Trichuris was positively associated with bacterial and fungal richness. To our knowledge, this is one of the few studies demonstrating an interaction between helminth and gut microbiota communities in wild non-human primates.


Asunto(s)
Ecosistema , Microbioma Gastrointestinal , Helmintos/fisiología , Animales , Biodiversidad , Colobinae , Conservación de los Recursos Naturales , ADN Intergénico , Especies en Peligro de Extinción , Ambiente , Heces , Femenino , Bosques , Tracto Gastrointestinal/parasitología , Geografía , Masculino , ARN Ribosómico 16S/metabolismo , Especificidad de la Especie
14.
Zootaxa ; 4948(2): zootaxa.4948.2.5, 2021 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-33757027

RESUMEN

A new subspecies of giant sengi or elephant-shrew, first documented in 2008, is described from northern coastal Kenya. All five currently described species and most known subspecies of Rhynchocyon are compared to this new lineage. Molecular analyses using mitochondrial and nuclear markers from the single DNA sample available for the new lineage show differences from other forms and reveal a close relationship with the allopatric golden-rumped sengi R. chrysopygus (0.43% divergence at the 12S mitochondrial locus). This level of 12S divergence is similar to that between other subspecies pairs within Rhynchocyon. Based on three voucher specimens and 843 images from camera traps, the new lineage is similar to R. chrysopygus in the rufous-maroon sides and shoulders but is distinguished by the lack of the golden rump, the presence of jet-black distal rump and thighs, dark dorsal line, and a pronounced nuchal crest of hairs. Though it also shows superficial pelage similarities to two Tanzania species, R. udzungwensis and the dark coastal form of R. cirnei macrurus, the new form has differences in pelage coloration that are clearly diagnosable from all other taxa. This new lineage has an allopatric distribution to all known Rhynchocyon taxa, with the closest congener being R. chrysopygus located 140 km apart. We estimate a potential range size for the new taxon of ~1980 km2 in the Boni and Dodori National Reserves with habitat consisting of mixed thickets and dry forests. Because of its close genetic relationship with R. chrysopygus, its allopatric distribution, and divergent coloration, the new subspecies is designated Rhynchocyon chrysopygus mandelai. The previously described populations of R. chrysopygus from southern coastal Kenya are now designated R. chrysopygus chrysopygus. As the current severe political insecurity in the area threatens the new taxon, we hope that its description will help establish immediate conservation priorities and action for the subspecies and its habitat.


Asunto(s)
Ecosistema , Musarañas , Animales , Kenia , Filogenia
16.
Proc Biol Sci ; 288(1945): 20202098, 2021 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-33593187

RESUMEN

A variety of factors can affect the biodiversity of tropical mammal communities, but their relative importance and directionality remain uncertain. Previous global investigations of mammal functional diversity have relied on range maps instead of observational data to determine community composition. We test the effects of species pools, habitat heterogeneity, primary productivity and human disturbance on the functional diversity (dispersion and richness) of mammal communities using the largest standardized tropical forest camera trap monitoring system, the Tropical Ecology Assessment and Monitoring (TEAM) Network. We use occupancy values derived from the camera trap data to calculate occupancy-weighted functional diversity and use Bayesian generalized linear regression to determine the effects of multiple predictors. Mammal community functional dispersion increased with primary productivity, while functional richness decreased with human-induced local extinctions and was significantly lower in Madagascar than other tropical regions. The significant positive relationship between functional dispersion and productivity was evident only when functional dispersion was weighted by species' occupancies. Thus, observational data from standardized monitoring can reveal the drivers of mammal communities in ways that are not readily apparent from range map-based studies. The positive association between occupancy-weighted functional dispersion of tropical forest mammal communities and primary productivity suggests that unique functional traits may be more beneficial in more productive ecosystems and may allow species to persist at higher abundances.


Asunto(s)
Biodiversidad , Ecosistema , Animales , Teorema de Bayes , Bosques , Humanos , Madagascar , Mamíferos , Clima Tropical
17.
Mol Phylogenet Evol ; 154: 107001, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33130298

RESUMEN

Giant sengis, or elephant-shrews (Macroscelidea; Macroscelididae; Rhynchocyon), are small-bodied mammals found in central and eastern African forests. Studies have provided contrasting views of the extent and direction of introgression among species. We generated full mitochondrial genomes, and compiled publically available mtDNA 12S and nuclear vWF sequences from Rhynchocyon cirnei, R. petersi and R. udzungwensis that had not previously been analyzed in concert, to elucidate the phylogenetic and population-specific context of potential introgression. Our spatially and phylogenetically broad sampling across species revealed substantial, unidirectional mitochondrial introgression of the R. petersi lineage into R. cirnei reichardi and R. udzungwensis, and from R. udzungwensis into R. c. reichardi. All introgression was highly localized and found only in the eastern Udzungwa Mountains forests in Tanzania. The nuclear data showed another pattern, with R. petersi haplotypes in R. cirnei cirnei and R. c. reichardi. No individuals showed both mitochondrial and nuclear introgression. Our results suggest higher levels of hybridization among giant sengi species than previously recognized, but also highlight the need for further genome-wide analysis and increased spatial sampling to clarify the many aspects of diversification and introgression in this group.


Asunto(s)
Musarañas/clasificación , Musarañas/genética , Animales , Núcleo Celular/genética , ADN Intergénico/genética , ADN Mitocondrial/genética , Genoma Mitocondrial , Geografía , Haplotipos/genética , Hibridación Genética , Filogenia , Tanzanía
18.
Sci Rep ; 10(1): 10917, 2020 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-32616818

RESUMEN

In light of the current biodiversity crisis, investigating the human impact on non-human primate gut biology is important to understanding the ecological significance of gut community dynamics across changing habitats and its role in conservation. Using traditional coproscopic parasitological techniques, we compared the gastrointestinal protozoan and metazoan symbiont richness of two primates: the Udzungwa red colobus (Procolobus gordonorum) and the yellow baboon (Papio cynocephalus). These species live sympatrically in both protected and unprotected forests within the Udzungwa Mountains of Tanzania with distinct ecological adaptations and diets. Our results showed that terrestrial and omnivorous yellow baboons had 2 (95% CI 1.47-2.73) and 3.78 (2.62-5.46) times higher gut symbiont richness (both including and excluding rare protozoans) compared to the arboreal and leaf-eating Udzungwa red colobus in unprotected and protected forest, respectively. We also found a consistent depletion of symbiont richness in red colobus living in the unprotected forest fragment compared to the continuous protected forests [the latter having 1.97 times (95% CI 1.33-2.92) higher richness], but not in yellow baboons. Richness reduction was particularly evident in the Udzungwa red colobus monkeys, confirming the pattern we reported previously for gut bacterial communities. This study demonstrates the impact of human activities even on the microbiodiversity of the intestinal tract of this species. Against the background of rapid global change and habitat degradation, and given the health benefits of intact gut communities, the decrease in natural gut symbionts reported here is worrying. Further study of these communities should form an essential part of the conservation framework.


Asunto(s)
Amébidos , Colobus , Helmintos , Intestinos , Papio , Simbiosis , Trichostomatida , Animales , Biodiversidad , Dieta , Ecosistema , Heces , Bosques , Actividades Humanas , Especificidad de la Especie , Tanzanía
19.
Ecol Evol ; 10(9): 3881-3894, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32489618

RESUMEN

Protected areas (PAs) in the tropics are vulnerable to human encroachment, and, despite formal protection, they do not fully mitigate anthropogenic threats to habitats and biodiversity. However, attempts to quantify the effectiveness of PAs and to understand the status and changes of wildlife populations in relation to protection efficiency remain limited. Here, we used camera-trapping data collected over 8 consecutive years (2009-2016) to investigate the yearly occurrences of medium-to-large mammals within the Udzungwa Mountains National Park (Tanzania), an area of outstanding importance for biological endemism and conservation. Specifically, we evaluated the effects of habitat and proxies of human disturbance, namely illegal hunting with snares and firewood collection (a practice that was banned in 2011 in the park), on species' occurrence probabilities. Our results showed variability in species' responses to disturbance: The only species that showed a negative effect of the number of snares found on occurrence probability was the Harvey's duiker, a relatively widespread forest antelope. Similarly, we found a moderate positive effect of the firewood collection ban on only the suni, another common antelope, and a negative effect on a large opportunistic rodent, the giant-pouched rat. Importantly, we found evidence of temporal stability in occurrence probability for all species over the 8-year study period. Our findings suggest that well-managed PAs can sustain mammal populations in tropical forests. However, variability among species in their responses to anthropogenic disturbance necessitates consideration in the design of conservation action plans for multiple taxa.

20.
mSystems ; 5(3)2020 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-32457237

RESUMEN

Human exploitation and destruction of tropical resources are currently threatening innumerable wild animal species, altering natural ecosystems and thus, food resources, with profound effects on gut microbiota. Given their conservation status and the importance to tropical ecosystems, wild nonhuman primates make excellent models to investigate the effect of human disturbance on the diversity of host-associated microbiota. Previous investigations have revealed a loss of fecal bacterial diversity in primates living in degraded compared to intact forests. However, these data are available for a limited number of species, and very limited information is available on the fungal taxa hosted by the gut. Here, we estimated the diversity and composition of gut bacterial and fungal communities in two primates living sympatrically in both human-modified and pristine forests in the Udzungwa Mountains of Tanzania. Noninvasively collected fecal samples of 12 groups of the Udzungwa red colobus (Procolobus gordonorum) (n = 89), a native and endangered primate (arboreal and predominantly leaf-eating), and five groups of the yellow baboon (Papio cynocephalus) (n = 69), a common species of least concern (ground-feeding and omnivorous), were analyzed by the V1-V3 region of the 16S rRNA gene (bacterial) and ITS1-ITS2 (fungal) sequencing. Gut bacterial diversities were associated with habitat in both species, most likely depending on their ecological niches and associated digestive physiology, dietary strategies, and locomotor behavior. In addition, fungal communities also show distinctive traits across hosts and habitat type, highlighting the importance of investigating this relatively unexplored gut component.IMPORTANCE Gut microbiota diversity has become the subject of extensive research in human and nonhuman animals, linking diversity and composition to gut function and host health. Because wild primates are good indicators of tropical ecosystem health, we developed the idea that they are a suitable model to observe the consequences of advancing global change (e.g., habitat degradation) on gut microbiota. So far, most of the studies focus mainly on gut bacteria; however, they are not the only component of the gut: fungi also serve essential functions in gut homeostasis. Here, for the first time, we explore and measure diversity and composition of both bacterial and fungal microbiota components of two tropical primate species living in highly different habitat types (intact versus degraded forests). Results on their microbiota diversity and composition are discussed in light of conservation issues and potential applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...